
Vol. 94, No. 1 • January 2001 31

The Myth of Objectivity 
in Mathematics Assessment

Lew Romagnano

Awide array of alternatives to traditional
quiz-and-test assessment of students’ math-
ematical understanding has been proposed

in the last decade (e.g., Stenmark [1991]; NCTM
[1995]; Greer et al. [1999]). Adding open-ended
problems, performance tasks, writing assignments,
and portfolios to teachers’ assessment repertoires is
important, these documents argue, because “assem-
bling evidence from a variety of sources is more
likely to yield an accurate picture of what each stu-
dent knows and is able to do” (NCTM 2000, p. 24). 

The decision by teachers to incorporate some of
these less familiar assessment techniques is often
framed as a trade-off between objectivity and sub-
jectivity. Traditional assessment methods, which
are sometimes narrowly focused on skills and pro-
cedures, are at least objective measures of those
skills and procedures. By contrast, alternative
approaches—which have the potential to assess
students’ conceptual understanding and their 
problem-solving and reasoning ability—are unfor-
tunately subjective.

What does it mean for an assessment technique
to be objective? The American Heritage Dictionary
of the English Language defines the word as follows:

Ob•jec•tive adj. 1. Of or having to do with a material
object as distinguished from a mental concept, idea, or
belief. Compare subjective. 2. Having actual existence or
reality. 3. a. Uninfluenced by emotion, surmise, or per-
sonal prejudice. b. Based on observable phenomena; pre-
sented factually: an objective appraisal.

A student’s mathematical understanding—for
example, knowledge of linear functions or the
capacity to solve nonroutine problems—is a “mental
concept” and as such can be observed only indirect-
ly. Further, a teacher’s appraisal of this knowledge
cannot help but be influenced by emotion or surmise.

Objectivity, like the mythical pot of gold at the end
of the rainbow, would be wonderful if we could have
it, but it does not exist. All assessments of students’
mathematical understanding are subjective.

A more useful way to characterize methods of
assessment would be with respect to their consis-
tency, or reliability, and the meaning, or validity, of
the information that they provide. When different
teachers use a consistent method to assess the
knowledge of a given student, the teachers’ assess-
ments agree. When two students have roughly the
same level of understanding of a set of mathemati-
cal ideas, consistent assessment of these students’
understandings is roughly equal, as well.

Meaningful methods give teachers information
about students’ understanding of specific mathe-
matical ideas and how this understanding changes
over time. This information can be used to make
appropriate instructional decisions.

The following examples of information collected
by using three familiar methods—a teacher-made
quiz, the Advanced Placement calculus test, and
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the SAT-I Mathematics test—illustrate both the
inherent subjectivity of these methods and the
value of considering, instead, the consistency and
meaning of the methods.

A TEACHER-MADE QUIZ
An algebra teacher who is hoping to assess stu-
dents’ ability to solve quadratic equations might
include the following task on a quiz:

Solve: x2 + x – 6 = 0.

Figure 1 shows one student’s response to this
task. Before reading any further, assess this second-
year algebra student’s work and assign a point
value, assuming that “full credit” is five points and
that partial credit is allowed.

terms is zero. She does know that the solutions of
this quadratic equation are specific points on the
graph of a quadratic function.

The teacher could conclude that this student
knows a great deal about solving quadratic equa-
tions but has some trouble keeping signs straight,
since both mistakes are sign errors. Or the teacher
could conclude that this student has tried to memo-
rize a procedure for solving quadratic equations
and has—perhaps without any understanding—
reproduced most, but not all, the steps correctly. A
conclusion about this student’s knowledge of qua-
dratic equations and how to solve them would
require the teacher’s judgment. This judgment
would have to be exercised in the face of incomplete
and ambiguous evidence furnished by the student
and without any explicit guidance.

What score did you assign to this paper? Why did
you assign that score? These questions have been
asked of practicing teachers in many classes, work-
shops, and conference sessions in the last few years.
The responses have been distributed more or less
evenly among the scores 2, 3, and 4. This 40 per-
cent variation is attributable to judgments that
individual teachers made about the relative impor-
tance of each aspect of this student’s work
described previously. In other words, these scores
are subjective.

Thus, an apparently straightforward question of
the most common and traditional type produced
assessment information that says as much about
the scorer as it does about the student. The scores
on quizzes and tests that consist of such items as
this example are inconsistent and may not offer
much information about the mathematical knowl-
edge of the student.

THE ADVANCED PLACEMENT 
CALCULUS TEST
Advanced Placement calculus tests have been taken
by high school students for four decades. These tests
include multiple-choice items, the staple of standard-
ized tests, and a set of free-response questions for
which students must supply answers, show their
work, and explain their reasoning. This respected
measure of students’ knowledge of elementary cal-
culus is thus, in part, an alternative assessment.

The 1998 Advanced Placement Calculus AB test
contained the free-response question shown in fig-
ure 2. Students’ solutions to free-response ques-
tions such as this one are scored by at least two
readers, who follow an explicit set of guidelines for
assigning points and must agree on the score
assigned to each paper. The rubric used to score
this problem is shown in figure 3.

In this scoring rubric, the nine points allocated
for this problem are assigned as follows: two points
for finding the derivative implicitly and verifying it,

Solve:
x2 + x – 6 = 0

Fig. 1
A typical task and one student’s solution

This student has correctly listed all factors of the
constant coefficient of the expression on the left
side of the equation. She used the first of these fac-
tor pairs to construct two potential binomial factors
of the quadratic expression. She seems to have
checked the “outside” and “inside” products to
determine whether multiplying these binomials
produces a quadratic expression with the proper
middle term. Her first misstep is that the product
of these binomials does not produce the correct mid-
dle term. She seems satisfied, though, and she pro-
ceeds to write the solutions of the equation. Then,
in her “check,” she shows that a graph of the qua-
dratic function y = x2 + x – 6 has x-intercepts at –2
and 3. Her graph, with its incorrect axis of symme-
try, confirms her answers.

What does this student know about solving qua-
dratic equations? She seems to know that one way
to solve them involves factoring the quadratic
expression. She also seems to know a method. She
knows the factors of –6. She might know that if a
product of two terms is zero, then at least one of the
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four points for finding where the derivative has the
value of zero and verifying that the tangent lines
are horizontal there, and three points for using one
of two different specified approaches to find the
point of tangency of the line y = –x. Use this rubric
to score the work shown in figure 4.

On part (a), the student’s correct implicit differ-
entiation would earn two points. Setting the deriva-
tive equal to 0 and, after a false start, solving for x
and y would earn two more points for part (b).
Finally, in part (c), setting the derivative equal to
–1 is worth an additional point. The score for this
student would be five points out of a possible nine
points.

This example shows a consistent assessment
method. Unlike the previously discussed quadratic-
equation task, for which arguments could be made
for a wide range of scores, the Advanced Placement
calculus task itself, for which predictable routes to
the solution exist, combines with the rubric that
specifies the routes and assigns points, thereby
facilitating agreement on a single score.

How useful is this score? What does five points
out of nine mean on this task? How much of the cal-
culus that this task is meant to assess does this
student know? Will everyone who obtains a five-
point score on this problem know the same amount?
This student is clearly able to differentiate implicit-
ly. The student also seems to know that the deriva-
tive is related to the slope of the tangent to the
curve at a point. Given the difficulty that this stu-
dent had in completing parts (b) and (c), any other
inferences about the student’s mathematical knowl-
edge would be difficult.

Another student who earned the same score for
parts (a) and (b) could have earned three points for
part (c) by successfully completing the first of the
two solution strategies outlined in the rubric. How-
ever, that strategy makes no use of calculus. There-

fore, a score of seven points out of nine could be
earned without furnishing any additional evidence
of understanding of calculus. To put these scores in
context, the average score of all 1998 Advanced
Placement Calculus AB test-takers on this item
was 2.86, and 80 percent of those test-takers scored
4 or lower (College Board).

As this example illustrates, the specificity required
for consistent scoring can reduce the usefulness of
the scores themselves. Taken together, these two
assessment examples show that, although consis-
tency is necessary, it is not sufficient to ensure that
assessment information is useful.

THE SAT-I MATHEMATICS TEST
The Scholastic Assessment Test (SAT) is a widely
used example of a standardized, norm-referenced
test. The test is administered under standardized
conditions, including the amount of time allotted
and the directions and resources provided for the
test-takers. The scores are norm-referenced: the
student is told how his or her performance com-
pared with that of a comparison group of students
who already took the test instead of being told how
many questions he or she answered correctly and
incorrectly.

The mean score on the SAT-I Mathematics test is
500, the standard deviation of scores is 100, and
the test items are chosen so that the scores of the
comparison group are approximately normally dis-
tributed, as shown in figure 5 (Crocker and Algina

Consider the curve defined by 2y3 + 6x2y –
12x2 + 6y = 1. 
a) Show that 

dy 4x – 2xy
dx

=
x[̀ +̀ y[̀ +̀ 1

.

b) Write an equation of each horizontal tan-
gent line to the curve.

c) The line through the origin with slope –1 is
tangent to the curve at point P. Find the x-
and y-coordinates of point P.

Fig. 2
1998 Advanced Placement Calculus AB 

free-response question 6
(Source: College Board)

a) Show that

dy 4x – 2xy
dx

=
x[̀ +̀ y[̀ +̀ 1

.

b) Write an equation of each 
horizontal tangent line to 
the curve.

c) The line through the origin 
with slope –1 is tangent to the
curve at point P. Find the x- 
and y-coordinates of point P.

Fig. 3
Scoring rubric for Advanced Placement calculus free-response question

(Source: College Board)

1: implicit differentiation
1: verifies expression for dy/dx

1: sets dy/dx = 0
1: solves dy/dx = 0
1: uses solutions for x to find equa-

tions of horizontal tangent lines
1: verifies which solutions for y yield

equations of horizontal tangent
lines

1: y = –x
1: substitutes y = –x into equation of

curve
1: solves for x and y

or
1: sets dy/dx = –1
1: substitutes y = –x into dy/dx
1: solves for x and y



34 MATHEMATICS TEACHER

1986). A student who receives a score of 600 on this
test actually earned a raw score that placed him or
her one standard deviation above the mean raw
score of the comparison group. That student scored
higher than about 84 percent of the students with
whom he or she is being compared.

Suppose that student x scores 470 on the SAT-I
Mathematics test, whereas student y scores 530 on
the same test. What can you conclude about the
mathematical knowledge of these two students?
Most consumers of these scores—the students
themselves, their parents or guardians, teachers
and administrators, college admissions officers, and
newspaper reporters—would be confident that stu-
dent y knows more. What is the meaning of these
two scores? To answer this question, understanding
how these tests are designed is important.

The creators of such tests as the SAT base their
work on the assumption that students x and y each
possess a certain amount of knowledge, ability, or
(for the SAT) potential to succeed in the first year of
college. If they could ask students all possible ques-
tions, the resulting “true scores” on this complete
test would accurately measure their knowledge,
ability, or potential. However, constructing and
administering such a test is impossible. Instead,
the designers create a test that consists of ques-
tions that are, in effect, a random sample drawn
from the universe of all possible questions.

Like the results of any survey that is based on a
sample drawn from some population, the actual
scores that students earn on this test are only
approximations of their true scores. Each actual
score has some measurement error associated with
it. A full report of a student’s performance on this
test would use the actual score and the measure-
ment error to build an interval estimate.

For the SAT-I Mathematics test, the standard
error of measurement is about thirty points. Stu-
dent x’s actual score of 470, combined with this
measurement error, tells us that we can be 95 per-
cent sure that her or his true score is somewhere
between 410 and 530, an interval that extends
sixty points, that is, two “standard errors,” on
either side of the actual score. Similarly, student y’s
true score is, with 95 percent certainty, between
470 and 590. See figure 6.

These confidence intervals overlap; students x
and y would need actual scores that differed by at
least eighty-four points for us to be 95 percent sure
that their true scores were different. Because their
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Fig. 5
SAT-I Mathematics test-score distribution

(Source: Crocker and Algina 1986)

a) Show that 

dy 4x – 2xy
dx

=
x[̀ +̀ y[̀ +̀ 1

.

b) Write an equation of each horizontal tan-
gent line to the curve.

c) The line through the origin with slope –1 is
tangent to the curve at point P. Find the x-
and y-coordinates of point P.

Fig. 4
Sample student work
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actual scores differ by only sixty points, we do not
have enough evidence to conclude that their knowl-
edge differs at all. See the appendix for a deriva-
tion of these statistics.

The consistency of the assessment information
furnished by the SAT is reduced by the seldom-
reported variability introduced by measurement
error. What do the scores mean? What mathemati-
cal ideas are being assessed by this test? How much
mathematics is known by students x and y, whose
scores are statistically the same? The norm-refer-
enced score reported for each student—a score that
simply describes how that student did relative to
students in the comparison group—carries little
information about how much that student under-
stands of the arithmetic, elementary algebra, and
geometry content of the test.

In the eyes of parents, administrators, and other
consumers of assessment information, standard-
ized, norm-referenced tests are the “gold standard”
of objective assessment. However, objectivity—even
in these tests—does not exist. Human judgment
about mental constructs is introduced when test
designers and consumers decide “what items to
include on the test, the wording and content of the
items, the determination of the ‘correct’ answer, . . .
how the test is administered, and the uses of the
results” (FairTest: The National Center for Fair
and Open Testing), as well as when designers
assume that at any given time, each student pos-
sesses a certain amount of knowledge, ability, or
potential that can be measured, with some mea-
surement error, by a single instrument. Such a test
is only one way to conceptualize knowledge, ability,
or potential. If knowledge is multifaceted, complex,
individually constructed, and inextricably tied to
the context in which the learning occurs—as more
than two decades of research on learning indicate
(Davis, Maher, and Noddings 1990; Battista
1999)—then no single instrument is likely to “mea-
sure” that knowledge in any consistent and mean-
ingful way.

DISCUSSION
In educational assessment—the myriad processes
by which humans try to determine what other
humans “know”—objectivity is a term that simply

does not apply. Alternatively, we can strive for
“agreed-on subjectivity.” The following two specific
suggestions can help improve the consistency and
usefulness of assessment information gathered by
teachers.

First, design classroom assessment tasks that
are likely to elicit the information that you seek.
Ask yourself the following questions: What is the
mathematics that I am trying to assess here? What
tasks will tap this mathematics most directly? A
teacher of second-year algebra might want to know
what students understand about quadratic equa-
tions and the techniques for solving them. The
question in the previously discussed example—con-
sisting of the one-word imperative “solve”—does not
directly ask students to supply much information
about their understanding. The set of tasks in fig-
ure 7, for example, does so more specifically. Greer
et al. (1999) offer guidelines for creating and adapt-
ing tasks for classroom assessment.

a) Use one of the symbolic methods that were
developed in class to find solutions to the
equation

x2 + x – 6 = 0.

b) Explain the method that you used in part
(a).

c) Use the graph of a function to illustrate the
solutions that you found in part (a).

d) Finding no real solutions to a quadratic
equation is possible. Explain how this
result could happen. Give an example that
illustrates your explanation.

Fig. 7
A revised quadratic-equation task

Second, before assigning any task to students,
devise—and share with the students—guidelines
for scoring their work. See Thompson and Senk
(1998) and Greer et al. (1999). Ask yourself what
types of responses you are likely to get from stu-
dents to these tasks and what you will accept as
evidence of adequate understanding. Thinking
these questions through before giving the tasks to
students helps clarify the tasks themselves. It also
helps align the tasks with the in-class instruction.
Sharing these guidelines with students communi-
cates expectations and makes meeting them more
likely. One set of guidelines for scoring student work
on the tasks in figure 7 is proposed in figure 8.

CONCLUSION
Such false dichotomies as “objective versus subjec-
tive” and “traditional versus alternative” derail

400 450 500 550 600
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Student y

Fig. 6
Interval estimates of two SAT scores
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meaningful discussions of the important issues in
mathematics assessment. The labels “traditional”
and “alternative” are meaningless; a five-question
classroom quiz can give detailed information about
what students know, or it can furnish very little
information, depending on how it is designed,
scored, and used. No “objective” assessment occurs;
subjective—that is, human—knowledge, beliefs,
judgments, and decisions are unavoidable parts of
any assessment scheme. Teachers should consider
ways to make assessment of students’ mathemati-
cal understanding, as well as the information gath-
ered through that assessment, more consistent and
useful.

APPENDIX
Computing the measurement error and confidence
interval around test scores depends on the concept of
reliability. The reliability of a test is an answer to the
question, How accurately does this test measure what
it intends to measure? In other words, if the test is
administered many times to the same student, how
close will the results be? If we gave the test to two stu-
dents who possess the same amount of the knowledge
or ability being measured, how close would the scores
be? As another example, if we were discussing the
reliability of a thermometer, we would ask how close
thermometer readings are to the actual temperature

and how consistently the thermometer produces these
readings.

One way to determine the reliability of a test is to
correlate students’ scores on repeated administrations
of that test. A perfectly reliable test—one that reports
students’ true scores with no error—would have a
“test-retest” reliability ρXX' = 1. However, no test is
perfectly reliable. If you could repeatedly administer a
test, the set of scores for a particular student would be
distributed around the student’s true score. See fig-
ure A-1. The more reliable the test, the higher the
test-retest correlation and the tighter the distribution
of scores. For the very reliable SAT-I Mathematics
test, ρXX ' = 0.91.

5 – All the characteristics of 4, plus either a
valid example with a clear explanation for
part (d) or exceptional responses to parts
(a) through (c) along with a response to
part (d) that might have some minor
flaws.

4 – Correct responses to parts (a) through (c):
correct equation solutions, along with a
valid explanation of the method; sketch of
graph with all important features correct
and labeled. 

3 – Substantial evidence of understanding of
quadratic equations: some minor errors
(not central to understanding quadratic
equations) are the only information that is
missing from the characteristics of a 4.

- - -  - - - - - - - - - - - - - - - - - - - - - - - - -
2 – Some evidence of understanding of qua-

dratic equations is present: either a sym-
bolic solution or a graphical illustration,
perhaps with some minor errors.

1 – Little understanding of quadratic equa-
tions is shown: major errors in all parts of
the problem.

0 – No attempt made.

Fig. 8
A scoring rubric for the revised task

–2σe –1σe True
Score

+1σe +2σe

Fig. A-1
The distribution of actual scores around a 

student’s true score
(Source: Crocker and Algina 1986)

The standard deviation of this distribution of scores
is the standard error of measurement, σe. It can be cal-
culated using the standard deviation of the test
scores, σX, and the test’s reliability, ρXX ', using

σe = σX¡1̀ –`̀ρX̀X̀'.

For the SAT-I Mathematics test, σX = 100 and ρXX ' =
0.91, so

σe = 100¡1̀ –̀ 0.91
= 100¡0.09
= 100(0.3)
= 30 points.

Therefore, for this student, 68 percent of the scores
that she would earn if she were to take the test
repeatedly would be within thirty points on either side
of her true score. Similarly, 95 percent of her scores
would be within sixty points on either side of her true
score.

Imagine that the test could be administered repeat-
edly to two different students. If the difference
between these two students’ scores is computed every
time that the test is administered, these difference
values would also lie on a distribution, this time
around the true difference score for these students.
Because the distributions of the two scores are inde-
pendent, the variance of this difference distribution is
equal to the sum of the two individual variances:

σ 2
X–Y = σ 2

X + σ 2
Y

For the SAT-I Mathematics test, 

σ 2
X = σ 2

Y

= σ 2
e,

so
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σ 2
X–Y = σ 2

e + σ 2
e

= 2 σ 2
e.

Therefore, the “standard error of the difference”
between two SAT-I Mathematics test scores is

σ X–Y = ¡2σe

� 1.4(30)
= 42 points.

To be 95 percent sure that two actual scores represent
different true scores, the actual scores would have to
differ by at least eighty-four points.
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